Home >  Glucose in balance Lesson Four Today we will… See how homeostasis works to keep the body in balance Learn about the organs and

Glucose in balance Lesson Four Today we will… See how homeostasis works to keep the body in balance Learn about the organs and


Glucose in balance 

Lesson Four 

Today we will… 

  • See how homeostasis works to keep the body in balance
  • Learn about the organs and hormones involved in glucose homeostasis 
  • Model the mechanism of type 2 diabetes 
  • Learn about the factors that contribute to type 2 diabetes 
     
     

Meet the players 

Who’s who of diabetes: 

Glucose! Many of the foods we eat are broken down during digestion to this simple sugar.  Glucose is carried to every cell in our body by the blood stream, where it is used as the source of energy for our bodies. 
 

In our model, the 6-sided glucose sugar is represented by a round pasta piece. 

Glycogen! The stored form of glucose is called glycogen. Glycogen is made up of many connected units of glucose. 

Please fill out the first section of Student Sheet 4 as you proceed through the next few slides.


Meet the players 

Who’s who of diabetes: 

Insulin! This hormone is released into the blood when blood glucose levels are high. It enables glucose to be transported into the cell in some tissues.  
 
 
 
 

In our model, insulin is represented by a piece of I-shaped pasta  

Glucagon! This hormone is released into the blood when blood glucose levels are low. It enables glucose to be released from some tissues back into the blood stream. 

In our model, glucagon is represented by a piece of curvy-shaped pasta  

Please fill out the first section of Student Sheet 4 as you proceed through the next few slides.


Meet the players 

The body organs: 

Pancreas: One of the major players in glucose homeostasis, the pancreas releases the hormones, insulin and glucagon, that control blood glucose. The cells in the pancreas that produce insulin are called β (beta) cells.   

Liver: This organ takes up glucose when levels are high and releases glucose when levels are low. It stores glucose in chains as glycogen. It is key for glucose regulation. 
 


Meet the players 

More body organs: 

Muscles: Our muscles are able to take up and store lots of glucose when insulin is present. More muscles mass means more of a reservoir for glucose. 

Fat cells: Fat cells take up glucose when insulin is present. Fat cells use glucose to make more fat.  

Brain: The brain takes up glucose whenever it needs energy, and doesn’t require insulin. Glucose is the fuel the brain normally uses.


Glucose in balance 

All of these systems work together to keep our blood glucose level balanced.

For our model, 3 pasta wheels represent a balanced amount of blood glucose. 

Balanced Blood Glucose 

Balanced Blood Glucose 

Balanced Blood Glucose


Glucose in balance 

High blood glucose triggers the pancreas to release insulin. 

High Blood Glucose 

Pancreas releases insulin 

Blood vessels carry insulin and glucose to cells


Glucose in balance 

Low blood glucose triggers the pancreas to release glucagon 

Low Blood Glucose 

Pancreas releases glucagon 

Blood vessels carry glucagon to the body to trigger the release of stored glucose back into the blood.


Glucose in balance 

This balancing act happens many times a day—every time you have a meal or consume a drink with sugar. The ability of the body to maintain balance and regulate internal conditions is called homeostasis

Balanced Blood Glucose 

Please answer question 1, 2 and 3 on Student Sheet 4.


Glucose in balance 

  1. Pour about 15 glucose pieces into the pan on the balance and tilt the balance.

How does the pancreas respond?

  

    1. Release 5 insulin into the blood stream.
  1. Insulin is carried to the cells. Place insulin onto each receptor on the liver, fat and  muscle.  
  1. The insulin/receptor combination activates a channel for the glucose to move into the cell in muscle and fat cells. In the liver, the channel is always active. 
  1. Move glucose into the liver, fat and muscle. The muscles are able to take up lots of glucose, so move more glucose into the muscles. 
  1. Don’t forget to feed the brain! Without insulin receptors, glucose can move freely into the brain. Give the brain one glucose.  
 
 

SCENARIO ONE

You have just eaten a meal of pancakes and maple syrup. What happens?


Glucose in balance 

  1. Continue moving glucose into organs until blood glucose is back to the normal level (3 glucose remain on the balance).
  1. Arrange the glucose in the muscle and liver into chains to represent stored glucose in the form of glycogen
  1. Once glucose in the blood is decreased, insulin can be removed from the receptors.  
  1. This is the end of Scenario One. Keep your board as it is to begin Scenario Two. 
 
 

SCENARIO ONE, continued

You have just eaten a meal of pancakes and maple syrup. What happens? 

Please answer question 4 on Student Sheet 4, and wait until your teacher directs you to go on.


Glucose in balance 

  1. Your brain is hungry! Feed it one glucose from the pan on the balance, and move the balance accordingly.

What happens to the blood glucose level?

How does your pancreas respond? 

  1. Release 5 glucagon into the blood stream.
  1. Place a glucagon on its receptor on the liver. The glucagon/receptor combination results in glucose being released from the liver by breaking down glycogen. 
  1. Move 2 glucose out of the liver into the blood stream
  1. Your brain needs energy again. Give it another glucose
  • End of scenario two. You may clear your board. 
 
 

SCENARIO TWO

You’ve been sitting in school and haven’t eaten in hours! What happens? 

Please answer question 5 on Student Sheet 4, and wait until your teacher directs you to go on.


Glucose in balance 

meal 

Time in minutes 

-60 


60 

120 

180 

240 

Unger, FH. N Engl J Med. 1971; 285:443-9 

Please talk about this graph with your partner(s) and draw your predictions on Student Sheet 4 before advancing the slide.


Glucose out of balance 

So far, everything we’ve seen has been the body’s healthy response to glucose.  

When our bodies are overweight, especially around the middle, our insulin receptors become changed and do not bind insulin as well. This is called insulin resistance and can lead to the development of type 2 diabetes. 

SCENARIO THREE

What happens to blood glucose after eating a meal when the body becomes insulin resistant? 

  1. Place a small sticky note on each insulin receptor to show that it is insulin resistant.
  1. Pour about 15 round pasta pieces into the pan on the balance. 

What does this do to the blood glucose level? How does the pancreas respond?    

    1. Release 5 insulin into the blood stream.

 


Glucose out of balance 

  1. The resistant insulin receptors cannot bind insulin at this concentration. Muscle, liver and fat do not take up glucose.
  1. The glucose levels are still high, so the pancreas releases more insulin.      Release 5 more insulin into the blood stream. 
  1. At this higher insulin level, some insulin receptors bind insulin.                            Put insulin on some of the receptors.   
  1. Liver, fat and muscle can take up some of the glucose in the blood.                    Put some of the blood glucose into these tissues. 
  1. Blood glucose is still high, so the pancreas releases more insulin.  

      Release 5 more insulin in the blood stream. 

  1. More receptors bind insulin.

      Put insulin on all its receptors. 

  1. Liver, muscle and fat take up more glucose from the bloodstream.

      Put more glucose in liver, muscle and fat. 

SCENARIO THREE


Glucose out of balance 

Once β cells are damaged, diabetes becomes a life-long condition that will always require management. 

Please answer question 7 on Student Sheet 4. 

What happens? 

Insulin resistance occurs because insulin receptors don’t bind insulin as well. This causes the pancreas to work hard all the time to release enough insulin to bring down blood glucose levels.  

β  cell damage

When the β cells in the pancreas are working hard all the time, they gradually become damaged and cannot make enough insulin to overcome insulin resistance. 


Glucose out of balance 

Pre-diabetes

At this stage, blood glucose levels are higher than normal after a meal and at a resting state, but not high enough to be classified as full-blown type 2 diabetes.  People with pre-diabetes are at increased risk for type 2 diabetes. 

Type 2 diabetes

Blood glucose levels are always high because of high insulin resistance and/or low insulin levels. 

Diabetes 

More than 200 mg/dl 
 

Between

140 mg/dl

and

200 mg/dl 
 
 

Less than

140 mg/dl 

Normal

Blood glucose levels are well-regulated. 

Oral Glucose Tolerance Test

(OGTT)


Glucose out of balance 

How is diabetes diagnosed? By measuring blood glucose levels. 

Fasting glucose test: After fasting for at least 12 hours, a person’s blood is drawn and tested for glucose. A healthy person would have a fasting blood glucose level of about 80-90 mg/dL.  

Oral Glucose Tolerance Test:  After measuring fasting glucose, a person is  given a glucose-rich drink. Blood is then drawn at time intervals to see how that person’s body is processing the glucose. 

A third test, the A1C test, measures how much of a person’s hemoglobin is coated with sugar. Since red blood cells (which carry hemoglobin) turn over every few months, the A1C test gives an average blood sugar level over the past 2-3 months. 


Healthy (n=240) 

Prediabetes (n=191) 

Diabetes (n=100) 


50 

100 

150 

200 

250 

300 


20 

40 

60 

80 

100 

120 

Time (min) 

Time (min) 


20 

40 

60 

80 

100 

120 


20 

40 

60 

80 

100 

120 

140 

Jensen CC et al: Diabetes 51:2170-2178; 2002 

Oral Glucose Tolerance Test 

Please talk about this graph with your partner(s), and draw your predictions about glucose levels—the graph on the left—on Student Sheet 4 before advancing the slide. 

Glucose given 

Fasting


What happens if… 
 

Using what you’ve learned, predict what would happen in the following situation: 

ONE:  The β cells in the pancreas can only produce a very small amount of insulin.

    
 

Answer: Without adequate insulin, glucose cannot enter the cells and glucose levels continue to rise in the blood.

 

Why does this matter? Excess glucose in the blood binds to proteins, cells and tissues and they no longer work the way they should. This can lead to: 

  • Constant thirst and urination, as the kidneys are unable to cope with high blood glucose levels. Other mechanisms can eventually lead to kidney failure.
  • Blindness, as the small blood vessels in the back of the eye become broken. 
  • Infection in the toes, legs and feet, caused by poor circulation and a lack of feeling due to nerve damage. 
  • Heart failure as large blood vessels become clogged and small blood vessels become fragile and leaky. 
 

Please make your prediction on 9a of Student Sheet 4.


What happens if… 
 

Using what you’ve learned, predict what would happen in the following situation: 

TWO:  You go from a sedentary lifestyle to one that includes daily exercise.

(Hint: Muscles can take in about five times as much glucose as liver and fat can. Muscles also burn glucose for energy.)

    
 

Answer: Regular activity can lower blood glucose levels. Muscles can use their own stored glycogen as energy, as well as taking in glucose from the blood.  When glucose levels are low, the liver can also release stored glycogen as glucose for the muscles to use.

 

Why does this matter? Exercise lowers blood glucose levels in the following ways: 

  • Building muscle provides more mass to store and use blood glucose.
  • During exercise, muscles are able to transport glucose into the cells without depending on insulin.  
  • Burning calories through exercise also helps maintain or decrease weight, which are important factors in type 2 diabetes. 
 

Please make your prediction on 9b of Student Sheet 4.


What happens if… 
 

Using what you’ve learned, predict what would happen in the following situation: 

THREE:  You have been diagnosed with type 2 diabetes and have been prescribed the drug Metformin. (Hint: Metformin acts to lower glucose production in the liver, and increase insulin sensitivity in the muscles.)

    
 

Answer: By lowering glucose production in the liver, glucose released by the liver won’t add to already high levels of blood glucose. In addition, the muscles will be able to better utilize the insulin in the blood--sort of like removing some of the sticky notes from the insulin receptors.  

 

Why does this matter? Treating diabetes often requires medication. Other drug treatments for type 2 diabetes include: 

  • Insulin injections when the β cells can no longer produce enough insulin.
  • Drugs that increase insulin production in the remaining functional β cells. 
  • Drugs that slow the digestion of starches to glucose and/or slow the emptying of the stomach in order to lessen sudden spikes of glucose in the blood. 
 
 

  
 
 

Please make your prediction on question 9c of Student Sheet 4.


Contributions to type 2 diabetes 

Insulin Resistance

in organs and tissues 

Decreased Insulin Production

in the pancreas 

Elevated Blood Glucose

=

PREDIABETES 

TYPE 2 DIABETES


Set Home | Add to Favorites

All Rights Reserved Powered by Free Document Search and Download

Copyright © 2011
This site does not host pdf,doc,ppt,xls,rtf,txt files all document are the property of their respective owners. complaint#downhi.com
TOP